Cell-Size-Dependent Spindle Elongation in the Caenorhabditis elegans Early Embryo

نویسندگان

  • Yuki Hara
  • Akatsuki Kimura
چکیده

Cell size is one of the critical parameters controlling the size of intracellular structures. A well-known example is the constant nuclear-to-cytoplasmic ratio (N/C ratio) [1-5]. The length of the metaphase spindle is proportional to cell size, but it has an upper limit during early embryogenesis [6]. During anaphase, the mitotic spindle elongates and delivers the centrosomes and sister chromatids near the centers of the nascent daughter cells. Here, we quantified the relationship between spindle elongation and cell size in the early embryo of Caenorhabditis elegans and propose possible models for cell-size-dependent spindle elongation. Quantitative measurements revealed that the extent and speed of spindle elongation are correlated with cell size throughout early embryogenesis. RNAi knockdown of Galpha proteins and their regulators revealed that the spindles failed to fully elongate and that the speed of spindle elongation was almost constant regardless of cell size. Our results suggest that spindle elongation is controlled by two qualitatively distinct mechanisms, i.e., Galpha-dependent and -independent modes of elongation. Simulation analyses revealed that the constant-pulling model and the force-generator-limited model reproduced the dynamics of the Galpha-independent and Galpha-dependent mechanisms, respectively. These models also explain how the set length of spindles is achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of mitotic spindle behavior during the first asymmetric embryonic division of nematodes

Asymmetric cell division is essential to generate cellular diversity. In many animal cells, the cleavage plane lies perpendicular to the mitotic spindle, and it is the spindle positioning that dictates the size of the daughter cells. Although some properties of spindle positioning are conserved between distantly related model species and different cell types, little is known of the evolutionary...

متن کامل

Objective measurement of spindle orientation in early Caenorhabditis elegans embryo.

The spindle orientation is a crucial piece of information to understand the development of embryo. The spindle forms during cell division and the cell divides along the spindle axis. Spindle orientation was measured in many different mutant embryos of Caenrohabditis elegans. However, the objectivity and the productivity of these measurements were low because these measurements were made manuall...

متن کامل

Centrosome Size Sets Mitotic Spindle Length in Caenorhabditis elegans Embryos

Just as the size of an organism is carefully controlled, the size of intracellular structures must also be regulated. The mitotic spindle is a supramolecular machine that generates the forces which separate sister chromatids during mitosis. Although spindles show little size variation between cells of the same type, spindle length can vary at least 10-fold between different species. Recent expe...

متن کامل

RAB-11 permissively regulates spindle alignment by modulating metaphase microtubule dynamics in Caenorhabditis elegans early embryos.

Alignment of the mitotic spindle along a preformed axis of polarity is crucial for generating cell diversity in many organisms, yet little is known about the role of the endomembrane system in this process. RAB-11 is a small GTPase enriched in recycling endosomes. When we depleted RAB-11 by RNAi in Caenorhabditis elegans, the spindle of the one-cell embryo failed to align along the axis of pola...

متن کامل

Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo

Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009